Public Health Reports

 Vol. 62 - OCTOBER 24, 1947 - No. 43Printed With the Approval of the Bureau of the Budget as Required by Rule 42 of the Joint Committee on Printing

STATISTICAL ACTIVITIES IN STATE HEALTH DEPARTMENTS ${ }^{1}$

By Daniel D. Swinney, Public Health Administrator, United States Public Health Service

Until recently the statistical activity of State health departments was limited generally to the collection, tabulation and analysis of data relating to births and deaths. Other statistical data and reports were collected by the operating divisions within the department, but, with few exceptions, were considered to be routine administrative reports. There is a growing realization that statistical data can be utilized to plan and evaluate operating programs. This development is leading to the broadening of statistical activity to satisfy this end.

The purpose of this paper is to ascertain, in State health departments, the existing patterns of organization and the statistical functions, the extent to which provision is made for personnel trained in statistics, and the minimum qualifications required and the salaries paid for such personnel.

This analysis is based on three sources of information:

1. The annual reports and plans submitted by each State health department to the United States Public Health Service in June 1946.
2. The personnel classification and compensation plans for merit system or civil service employees in State health departments. These plans are submitted by the State health departments to the United States Public Health Service for review and approval.
3. Reports and bulletins published by the State health departments.

Though these data provide the basis for a general description of the patterns of statistical activity in State health departments, including organization, content and scope, and the minimum personnel qualifications, they do not provide sufficient detail for accurate comparisons between States, or for the evaluation of different types of organizational patterns. Subsequent studies will be made for such purposes.

[^0]
Organization

Nineteen States have established some form of a centralized statistical unit which services all or more than one of the operating divisions in the State health department.

A centralized statistical organization is defined as a bureau, division, or unit established for the purpose of providing certain specific, or generalized statistical services to all units in a health department. Although this unit may be established to meet the statistical needs for the whole health department, some divisions may maintain independent statistical units. For example, in several of the States having centralized statistical organizations the functions of the collection, tabulation and analysis of morbidity reports have remained in the division of local health services, or the division of epidemiology. In most instances the centralized units have been initiated first through the development of central tabulating units, with additional statistical services being added as the needs arose and as qualified statistical personnel became available. Table 1 indicates the extent to which certain functions are carried on in such a statistical unit.

Table 1.-Functions of the statistical units of State health departments giving statistical services to more than one operating division (as of March 15, 1947)

Functions of statistical units	Number of States
Statistical units serving more than one operating division.	19
Registration and maintenance of vital records.	15
Field supervision over collection of:	
Morbidity reports.	15
Other health department reports	9
Tabulation of:	
Vital records	18
Morbidity reports.	15
Other health department reports	19
Analysis and presentation of:	
Vital statistics	17
Morbidity statistics	110
	15
Coordination of all statistical activity in health department Consultation of all health department statistics.	15
Development of methods of recording and reporting operations	11
Consultation on recording and reporting systems in local health	13

Several other States are in the process of reorganizing or plan to reorganize their statistical activities to achieve more coordination.

All of these centralized units tabulate routine statistical reports and make special tabulations for other divisions in the health department. Most of them are responsible for the tabulation of vital records and morbidity reports. While 15 of the 19 units supervise the collection of vital records, only 4 have this responsibility in respect to morbidity reports and 9 in respect to reports other than the two types mentioned. In some States, the division of vital statistics has only the functions of registering, filing, correcting, and coding of vital records, and issuing certified copies of these records. In these instances, the statistical
analysis and presentation of vital records has been given to a separate centralized statistical unit. Most of the centralized units, however, have been created by expanding and extending the activities and functions of the division or bureau of vital statistics.

In general, the centralized units have been given wider responsibility for the tabulation than for the analysis and presentation of the statistical data collected and tabulated. Perhaps this is a result of the lack of statistical personnel trained in the subject matter fields of the operating programs. It is interesting to note, however, that 10 of the centralized units are responsible for the analysis and presentation of morbidity statistics. It is not known to what extent the analysis goes beyond the tabular presentation and publication of the data collected in most of the units.

The efforts made by some State health officers to reduce the burden of reporting and recording and at the same time to obtain more accurate indices of their health programs are shown clearly in some of the centralized statistical units. Seventeen of the latter offer consultation on all statistical problems and procedures in the department, 15 coordinate all statistical activity within the department, and 13 have departmental-wide responsibilities for conducting special statistical and research studies. Some of the central statistical units maintain the venereal disèase and tuberculosis central registers.

In the past the bureau or division of local health services or its equivalent generally has had the sole responsibility for developing record-keeping and reporting systems in local health units as well as providing the necessary field consultant services. Eleven State health officers have given the central statistical unit the former, and 6 the latter responsibility. These two delegations of responsibility to the statistical unit are important and merit further study and evaluation. These actions constitute a recognition that the problems of record-keeping and statistical reporting in local health units are inextricable, and the skills of persons trained in statistical methodology are needed for efficient functioning of the units.
Attempts at coordination are being made in a few States where centralized statistical units have not been established. Ten States have designated a divisional unit, usually the division of vital statistics, to consult with other divisions on statistical problems and procedures, 3 are empowered to develop methods of recording and reporting operations of health units and 2 coordinate all statistical activity within the health department. These activities merit further study and evaluation.

One of the State health departments included among the group referred to above has one of the largest operating public health programs in the United States. It has a strong bureau of vital statistics,
and several of the operating divisions in the health department have statistical units staffed by qualified personnel. Seminars and interdivisional conferences achieve some degree of integration, but statistical activity is definitely decentralized. Some of the States having decentralized statistical programs have relatively small public health programs. The need for organizational structure to achieve coordination and integration is not apparent in these States and frequently the need for qualified statistical personnel has not been recognized.

More detailed information is needed on the following important aspects of the statistical services as they have now been developed in State health departments:

1. What is the extent and content of supervision over the collection of public health statistics (including vital statistics) from local health jurisdictions? It is known that some of the States have aggressively supervised the registration activities of local registrars of vital statistics through the use of training devices and field supervisors. Some of the States provide a limited amount of supervision over the reporting of other public health statistics, such as communicable diseases reports. More information is needed on the extent and content of this type of activity and the skills that are needed to secure more accurate and complete indices of the health of the nation.
2. What techniques are used for the coordination of all statistical activity within a State health department?
3. What administrative mechanisms are used to develop the method of recording and reporting the operations of local health units?
4. What is the extent and content of consultative services to local health - units on problems of record and reporting systems? Are they primarily a matter of giving routine instructions and checking accuracy of operations or are they designed to offer constructive suggestions on how recording and reporting may be achieved in a more economic and efficient manner, and how they may be utilized effectively in the improvement of the health services?
5. In what ways are public health statistics in their present form and content influencing departmental plans. policies, and programs?
Most authorities in the field of public health administration will agree that uniform patterns of administrative organization are not needed. Each State must establish its own system, based on its objectives, its emergent needs, the available personnel and its resources. Other studies on specific aspects of these problems have been planned in order to answer the above questions and to make more specific information available on the structure and content of the various types of public health statistical programs, and the techniques used to obtain more meaningful public health statistics in an economic and efficient manner.

Personnel

Organizational structure for the performance of any activity is important only if it facilitates the economic and efficient performance of basic functions by qualified personnel.

The source material for this study did not provide a complete picture of the personnel engaged in statistical activity and their qualifications. Data are not available on statistical personnel employed in county or municipal health departments, or on State department of health personnel paid out of fees received for vital records, or funds received from foundations. Specific information, however, was available on the number of classes of statistical positions (excluding clerical and tabulating) established in State health departments by merit systems or civil service commissions, the beginning annual salaries paid, duties, and required qualifications.

The data on personnel in this study refer to classes of positions and not individual positions. Under merit system or civil service regulations, positions are grouped into classes on the basis of ability to subject them to common treatment with respect to compensation, selection and other personnel actions. For example, a class may be established for senior statistician, without regard to the division or service in which the position or positions will be located. Each division or service may, if necessary, appoint a senior statistician under this class, and each incumbent will receive the same compensation and have the same general responsibilities and minimum qualifications.

There are 131 classes of statistical positions established in the 48 State health departments. Some classes have never been filled and others have been filled temporarily with persons not meeting the minimum qualifications. These classes are comparable only in that they have been classified as statistical positions on the basis of prescribed duties and responsibilities and minimum qualifications for incumbents.

Salaries for these positions range from $\$ 1,320$ per annum for entrance as a statistical aide in one State to $\$ 8,400$ per annum as the maximum salary for a director of a division of vital statistics. Information is not available on the exact salaries that are paid, nor on all increases or bonuses granted because of high living costs. Table 2 shows the distribution
Table 2.-The distribution of classes of statistical positions in State health departments in the continental United States by the minimum and maximum salary ranges, as of March 15, 1947

Range of salary	Classes of positions offering specified-			
	Minimum salary		Maximum salary	
	Number	Percent	Number	Percent
Under \$2,000-				
\$2,000 through $\$ 2,999$.	${ }_{37}^{52}$	${ }_{28}^{40}$	${ }_{46}^{33}$	${ }_{35}^{25}$
${ }_{\$ 4,000}$ through $\$ 4,999$.	14	10	${ }_{25}^{46}$	19
\$5,000 through \$5,999.	6	5	9	7
\$6,000 and over	1	1	9	7
Unknown......	5	4	5	
Total	131	100	131	100

of the minimum and the maximum salaries that may be paid under the current compensation plan. These data indicate that the minimum salary for 52 percent of the classes is less than $\$ 3,000$ per annum, and that 81 percent of the minimum salaries are less than $\$ 4,000$. During the war many States permitted appointments above the minimum salary step. If all of the States offered the maximum salary, only 14 percent of the classes would be paid at a rate of $\$ 5,000$ or more per annum, while 63 percent would receive less than $\$ 4,000$.

The difficulties in recruiting public health statisticians are not surprising when one realizes that the maximum salary potential for over 80 percent of the public health statisticians is less than $\$ 5,000$ per annum.

In interpreting these data, it must be remembered that factors other than salary affect income. There are differences in the length of work week. Some states have retirement plans, others do not. The number of holidays and the amount of vacation with pay vary.

All of the States have established some form of a statistical position. Nine States have established only 1 class; 16 have 2, 8 have 3, 11 have 4,3 have 5 , and 1 has 7 such classes. The median number of classes in all the State health departments is two. In most of the States having one statistical class, the position is Director or Assistant Director of Vital Statistics. In other instances, the statistician may be the Assistant Registrar of Vital Statistics, Senior Statistician. Chief Statistical Clerk, or have any one of a number of other titles.

The duties defined and enumerated in the class specifications for these positions reveal differences in the prevailing concepts as to what the content and scope of statistical activity is in relationship to public health programs. These differences do not appear to be related to the size of the State health department, the amount of available resources, or to the geographic location.

Some States do not require any academic training in statistics for the statistical positions, but in these instances experience in the collection, maintenance, and tabulation of public health reports or vital records is usually required. Their duties consist primarily of administering the routine collection, processing, and tabulation of basic administrative and statistical reports. In many of these specifications there appears to be an implied acceptance that the end result of a statistician's activities is a series of tabulations, with a routine analysis, primarily in terms of rates or percentage change.

In a few other States, class specifications indicate an entirely different philosophy. Whether there are one or several classes of statistical positions, sufficient academic and experience requirements have been established to assure the employment of qualified statisticians. The definition and description of the duties involved indicate recognition
that the skills of the statistician are needed to assist in the administration of many aspects of health department activity. One of the better examples of such a job description for a chief statistician in a State health department is as follows:

To plan and supervise research and statistical projects in public health and related fields; * * * to direct the collection and compilation, and to analyze data related to public health for the purpose of appraising and preparing reports on the social, medical, and financial phases of the programs; to plan, direct, and supervise the preparation of all reports; to edit publications; to prepare the main text and interpretation of reports; to make such studies of vital statistics records as may be required by requests for information by individual, private and public organizations in the field of public health; to plan and direct special studies and surveys; to assist through the development of factual data, in developing amendments to and formulating policies and procedures for the administration of the State law; to act as consultant in all statistical problems and procedures in the health department.

Descriptions of other positions in the same State and in other States having only one statistical position, or several positions in a decentralized organization, reveal a similar concept regarding the functions of a statistician in a public health program.

The job descriptions in other States vary between the two extremes. The emphasis in most of them is placed on the statistical processing of vital records. A few States have established statistical positions within specific fields of public health such as cancer control, communicable disease control and tuberculosis and venereal disease control.

The job descriptions for statistical positions in these States shows that certain important skills of the qualified statistician have not been widely recognized in the organizational planning for the public health services. Scant recognition has been given to the statistician's skill in developing methods of data collection and recording, and in evaluating original statistical data. Very few States provide for field supervision of data collection. There is a noticeable lack of provision for the analysis, interpretation and presentation of the results of routine reporting, evaluative studies and other quantitative data that are either available or are needed. Few of these States have made provision for trained statistical personnel in fields other than vital records and communicable disease control.

Certainly, one of the major reasons why there is not a greater public understanding of the health needs of the nation and its component parts is demonstrated in these specifications. A sufficient number of persons trained in statistical methodology in the public health field are not available for employment, and the skills of many who are employed are not fully utilized in the broader aspects of program interpretation and planning.

The minimum qualifications, including academic preparation and the type and length of qualifying experience required for public health statisticians, are of interest to those developing training and recruitment programs, and in evaluating current programs and accomplishments. The evaluation of minimum qualifications, however, is only one part of the selection process. All candidates for permanent appointments as public health statisticians, under the State merit systems, who possess the required minimum qualifications must pass a competitive examination. It is probable then that the qualifications of the persons so employed are higher than the required minimum qualifications indicate. For example, the minimum qualifications may not include a requirement of courses in statistics, but an examination may be given in that field.

Table $3{ }^{2}$ shows the distribution of the classes of statistical positions by the minimum qualifications and the types of required experience.

Minimum qualifications are specified for 118 of the 131 classes of positions. College graduation is a minimum qualification for employment in 45 percent of the classes. The median number of years experience required with college graduation is three. There are four classes of positions for which college graduation alone is sufficient for eligibility and for which experience is not required.

At least one year of postgraduate education is required in either public health, vital statistics, or allied fields to qualify for approximately one-fourth of the classes of positions. For four of the positions an M. D. degree is required, and for one position an M. D. or Ph. D. degree. The median number of years experience required with postgraduate education is three.

Only high-school education or an incomplete college education is required to qualify for 18 percent, or 24 of the classes of positions. Again, the median number of years experience required is three.

There are no appreciable differences in the types of experience required for classes of positions in which the academic prerequisites are college graduation or less. Experience in public health or vital statistics is asked for in less than 25 percent of the positions. The opposite is true for positions requiring postgraduate education. Experience in public health or vital statistics is required for approximately 70

[^1]percent of the 31 classes in this category. Administrative or supervisory experience is needed to qualify for approximately one-third of the classes.

Table 3.-The distribution of classes of statistical positions in State health departments, by minimum qualifications, and types of required experience, as of March 15, 1947

Educational and experience requirements	Number of classes of positions requiring -							
	Total	Per-centage	Statistical experience			Nonstatistical experience		No ex-perience required
			$\underset{\text { Public }}{\text { health }}$	Vital	Other or un-specified	Public health	Other or un-specified	
No educational requirements 1-2 \quad jears experience 3-4 years experience. 5 years experience and over	131	100	16	27	60	6	5	4
	4004	3		000	002	000	000	000
			0002					
Less than college graduation...-....-	245109	18	1 0 $\mathbf{3}$	001	3105	- $\begin{array}{r}\text { - } \\ 0 \\ 0 \\ 0 \\ 0\end{array}$		- $\begin{array}{r}\text { 0 } \\ 0 \\ 0 \\ 0\end{array}$
1-2 years experience								
3-4 years experience 5 years experience and over								
College graduation..	59	45	00120	23430	$\begin{array}{r} 0 \\ 20 \\ 12 \\ 3 \\ 0 \end{array}$	01100	02010	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$
Amount of experience not specified	2							
1-2 years experience --..............	26							
3-4 years experience.	18							
5 years experience and over	9							
No experience required..---.-.--	4							
One year or more of postgraduate education	31	24	0043	$\begin{aligned} & \mathbf{0} \\ & \mathbf{3} \\ & \mathbf{9} \\ & \mathbf{2} \end{aligned}$	1400	0220	0100	$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & \mathbf{0} \\ & \mathbf{0} \end{aligned}$
Amount of experience not specified.	11							
	210							
3-4 years experience --..............-	15							
5 years experience and over......-	35							
Minimum qualifications not specified or not available.	13	10						

${ }^{1}$ M. D. degree required for 1 class.
${ }^{2}$ M. D. degree required for 2 classes.
${ }^{2}$ M. D. degree required for 1 class; M. D. or Ph.D. degree required for 1 class.
As would be expected, as the educational requirements and the length of experience increases, requirements are more specific and call for some administrative or supervisory experience.

These data indicate little progress in the last nine years in raising the educational standards for persons seeking employment as public health statisticians. In 1938, the Committee on Professional Education of the American Public Health Association recommended " "that at least 1 year of prescribed graduate professional education, leading to the master's degree or certificate, subsequent to graduation from college, and at least 3 months of directed practical public health

[^2]statistical experience in a recognized public health or related agency be considered as the educational qualifications and training for public health statisticians toward which we should plan for the future." In 1947, less than 25 percent of the classes of statistical positions in State health departments have requirements which even approach those recommended so long ago.

Minimum qualifications cannot be written that will assure the employment of statisticians wholly qualified to perform all the functions that may be needed in health departments. The skills of the professional statistician may be used advantageously in many activities in departments of public health. Such activities range from the collection, tabulation and analysis of recurring statistical reports and the operating programs to the conduct of evaluative studies involving questions of sampling, schedule design and the significance of differences. In addition, there are many statistical problems in connection with epidemiology and treatment control, program planning and administration, and in respect to the interpretation of health department programs to the public, legislative bodies, and to other agencies. These activities are typical of those frequently needed in the general public health program, and in each of its specialized fields, which range from the control of specific communicable diseases to the evaluation of new laboratory techniques, or the evaluation of a dental hygiene program.

One statistician cannot be expected to be an expert in all of these fields. The resources of most health departments are not sufficient to justify the employment of many professional statisticians. More information is needed as to:

1. The specific content of the experience and educational qualifications of personnel who are successfully performing statistical functions.
2. The content of the training that public-health statisticians need to have.
3. The content of statistical training, if any, needed by doctors, nurses, sanitarians, clerks, and others employed in local health departments.
4. How health officers may more effectively utilize the skills of statistical personnel in the improvement of their public-health services.
The mere compilation of figures and their presentation in tabular form or simple charts should not be the end product of the statistician in the health department. His skill in providing accurate and intelligible indices of the health needs of the community should aid in the improvement of the public-health service program.

Summary

Two major patterns in the organization of statisticial activities have developed in the State health departments. The first and most extensive is a decentralized type of organization which exists in

29 States. Under this plan, each division provides its own statistical services, and develops its own statistics with little supervision or coordination from departmental officials. Professional statisticians may or may not be utilized by the respective divisions.
The second and more recent pattern is the centralized type of statistical organization found in 19 States. The functions of this type of organization vary in each State, but generally the centralized unit provides statistical services to all divisions of the health department.

These services usually include complete tabulating service, including coding, and assistance in analysis and presentation. Consultative services are made available on all statistical problems and procedures. Some have department-wide responsibility for:

1. Coordination of statistical activity,
2. Special research and statistical studies,
3. Developing record-keeping and reporting systems in local health units,
4. Supplying field supervision over the collection of statistical data from local health jurisdictions, and
5. Consulting with local health units on record-keeping and reporting systems.
All of the State health departments have established positions for statistical personnel. Some of the States, however, do not require academic training in statistics as a qualification for employment as a statistician, but rely entirely on experience qualifications.

The median number of classes of statistical positions is two, while the median beginning annual salary is under $\$ 3,000$. There are seven classes of positions which pay a beginning annual salary of $\$ 5,000$ or more. College graduation is required for 50 percent of the classes for which minimum qualifications are specified; one year or more of graduate education is required for 26 percent, and less than college graduation is required for 14 percent.

The median number of years experience required to qualify for the positions is three. It is the same for all levels of academic requirements. As the educational requirements and the length of experience increase, the qualifying requirements tend to be more specific and to specify some administrative or supervisory experience.

The data in this study indicate that most of the State health departments are probably without either the organizational structure or the personnel classifications needed to obtain accurate indices of the status of community health needs and the public health services being administered.

SICKNESS ABSENTEEISM AMONG MALE AND FEMALE INDUSTRIAL WORKERS, 1937-46, INCLUSIVE ${ }^{1}$

By W. M. Gafafer, Principal Statistician, United States Public Health Service

Quarterly reports have appeared for the year 1946 on the frequency of sickness and nonindustrial injuries causing disability for 8 consecutive calendar days or longer among a group of 200,000 male members of industrial sick benefit associations, group insurance plans, and company relief departments (1-3). The present report records the experience among males and females for the years 1937-46. The report thus presents the course of disabling morbidity during a decade including prewar, war, and postwar periods. The last report of the series referring to the experience of females appeared in 1946 (4).

Tables 1 and 2 show for males and females, respectively, the variation of the frequency rates according to cause during the 10 -year period 1937-46. Attention is directed to the excesses shown for each year by the female rates for all causes and for each broad sickness group when compared with the corresponding rates for the males. The largest excess for all causes occurred in 1946 when the female rate was more than twice the male rate. For each sex, furthermore, the increasing trend since 1938 of the rate for all causes is reversed in 1946 when, first, the male rate of 114.5 shows a decrease of 22 percent when compared with the corresponding rate (147.4) for 1945, and second, the female rate of 248.2 shows a decrease of 4 percent when compared with the rate (257.9) for 1945.

The last column of each table presents averages of the 10 annual rates for each cause and cause group. While the 1946 male rate for all causes is only 3 percent above the corresponding 10 -year average the female rate for the same year yields an excess of 34 percent. For males, excesses are generally shown for each cause with the exception of the respiratory group and its components, the females presenting generally excesses for all groups and components. Notable among the excesses are those for the rheumatic group ${ }^{2}$ (10 percent, males; 43 percent, females); nervous diseases ${ }^{3}$ (41 percent, males; 56 percent, females) ; circulatory diseases ${ }^{4}$ (36 percent, males; 54 percent, females); and genitourinary diseases ${ }^{5}$ (19 percent, males; 62 percent, females).

[^3]Table 1.-Average annual number of absences per 1,000 males on account of sickness and nonindustrial injuries disabling for 8 consecutive
calendar days or longer, by cause and year in which absences began, experience of male employees in various industries, $1937-46$, inclusive 1

Cause. (Numbers in parentheses are disease title numbers from International List of Causes of Death, 1939)	Year in which absences began										
	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1937-46 ${ }^{2}$
Sickness and nonindustrial injuries.	99.5	82.3	89.0	96.4	101.3	106.1	138.1	140.9	147.4	114.5	111.6
Percent of female rate...............	66	63	59	63	62	69	68	64	57	46	60
Nonindustrial injuries (169-195)	11.8	11.1	10.3	11.8	12.0	11.7	11.9	12.1	13.2	12.2	11.8
Sickness..	87.7	71.2	78.7	84.6	89.3	94.4	126.2	128.8	134.2	102.3	99.8
Respiratory diseases.	40.9	26.4	33.9	37.7	40.8	41.4	66.6	57.6	55.8	37.9	43.9
Tuberculosis of respiratory system (13)	. 8	. 9	. 7	. 7	. 7	. 8	. 8	. 7	. 7	1.7	. 8
Influenza, grippe (33)	21.4	9.9	16.6	17.5	18.9	15.7	29.7	24.6	22.1	14.2	19.0
Bronchitis, acute and chronic (106)	4.7	4.2	4.1	5.2	5. 6	6. 5	10.4	9.7	9. 6	5.7	6. 6
Pneumonia, all forms (107-109).	3.0	2.2	3.0	3.6	3. 7	5.5	8.8	6.3	5.3	3.8	4.5
Diseases of pharynx and tonsils (115b, 115c)	5.4	4.5	4.4	4.9	5. 5	5. 4	6.7	6.1	5.7	4.3	5.3
Other respiratory diseases (104, $105,110-114$)	5.6	4.7	5.1	5.8	6.4	7.5	10.2	10.2	12.4	9.2	7.7
Digestive diseases.	13.8	13.4	13.4	14.4	15.4	16.4	17.5	19.7	20.9	16.8	16.2
Diseases of stomach except cancer (117, 118)	4.0	4.1	3.5	3.9	4.2	4.7	5.9	6.5	7.5	5.1	4.9
Diarrhea and enteritis (120)	1.4	. 9	1.2	1.4	1.5	1.8	2.1	2.8	2.7	2.1	1.8
Appendicitis (121)	4.4	3.9	4.3	5.0	5.3	5.0	4.6	4.7	3.7	3.3	4.4
Hernia (122a)	1.5	1.7	1.5	1.5	1.5	1.9	2.0	2.1	2.9	2.9	2.0
Other digestive diseases (115a, $115 \mathrm{~d}, 116,122 \mathrm{~b}-129$)	2.5	2.8	2.9	2.6	2. 9	3.0	2.9	3. 6	4.1	3.4	3.1
Nonrespiratory-nondigestive diseases......-.-.-.-.	30.0	29.4	29.4	30.4	30.2	34.4	37.7	46.1	51.9	44.4	36.4
Infectious $34-44)^{8}$ and parasitic diseases (1-12, 14-24, 26-20, 31, 32 ,	2.7	2.1	2.1	1.8	2.5	2.5	2.4	2.4	3.0	3.0	2.5
Cancer, all sites (45-55)	. 4	. 6	. 6	. 6	. 5	. 4	. 4	. 5	. 7	. 6	. 5
Rheumatism, acute and chronic (58,59)	4.1	3.7	3.5	4.0	3.7	3.9	4.5	6.1	6.7	4.6	4.5
Neurasthenia and the like (part of 84d)	1.1	1.0	. 9	1.1	1.0	1.1	1.6	2.4	2.8	2.2	1.5
Neuralgia, neuritis, sciatica (87b)....-	2.2	2.1	2.2	2.3	2.0	2.2	2.7	3.2	4.0	2.9	2.6
Other diseases of nervous system (80-85, 87, except part of 84d, and 87b).	1.0	1.2	1.1	1.0	1.3	1.2	1.5	2.0	2.2	1.9	1.4
Diseases of heart (90-95)	2.5	2.6	2.9	2.9	2.5	2.7	3.2	4.6	5.0	4.5	3.3
Diseases of arteries and high blood pressure (96-99, 102) 9	1.1	1.2	1.2	1.1	1.2	1.6	2.4	3.0	2.1	1.6
Other diseases of circulatory system (100, 101, 103)	2.1	2.2	2.3	2.5	2.5	3.1	3.7	4.2	4.8	4.4	3.2
Nephritis, acute and chronic (130-132) - 13 -	. 5	. 5	. 4	. 4	. 4	. 4	. 5	. 5	. 4	. 5	. 4
Other diseases of genitourinary system (133-138).	2. 3	2.4	2. 3	2.7	2.4	2.6	2.7	3.6	3.6	3.3	2.8
Diseases of skin (151-153)..................................	3.1	3.0	2.7	2.8	2.7	3.1	3.2	3.6	3.9	3.8	3.2
(156b)	2.9	2.8	2.6	2.8	2.8	3.0	3.5	3.8	4.1	3.8	3.2
All other diseases (56, $57,60-79,88,89,154,155,156 \mathrm{a}, 157$, 162)	4.2	4.1	4.6	4.3	4.8	7.0	6.2	6.8	7.7	6.8	5. 7
Ill-defined and unknown causes (200)	3.0	2.0	2.0	2.1	2.9	2.2	4.4	5.4	5.6	3.2	3. 3
Average number of person-years.	200, 967	178, 405	188, 595	216, 621	257, 726	287, 548	293, 960	267, 716	237, 257	221, 442	2,350, 237

1 Industrial injuries and venereal diseases are not included.
3 A verage of the 10 annual rates.
Exclusive of influenza and grippe, respiratory tuberculosis, and venereal diseases.
Table 2.-Average annual number of absences per 1,000 females on account of sickness and nonindustrial injuries disabling for 8 consecutive

Cause. (Numbers in parentheses are disease title numbers from International List of Causes of Death, 1939)	Annual number of absences per 1,000 females										
	Year in which absences began										
	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1937-46 ${ }^{\text {8 }}$
Sickness and nonindustrial injuries.	151.1	130.4	150.0	153.3	163.3	168.4	204.1	221.0	257.9	248.2	184.8
Percent of male rate	152	158	169	159	161	169	148	157	175	217	166
Nonindustrial injuries (169-195)	10.9	[14.5	13.0	14.0	13.9	12.8	11.3	14.5	16.4	17.9	13.9
Sickness.	140.2	115.9	137.0	139.3	149.4	155.6	192.8	206.5	241.5	230.3	170.9
Respiratory diseases.	67.8	45.3	63.9	63.5	63.1	63.9	100.1	85.5	110.3	98.9	76.3
Tuberculosis of respiratory system (13)	. 6	1.7	. 9	. 6	. 7	1.6	. 6	. 2	.6	. 5	${ }^{.6}$
Influenta, grippe (33) --.----	33.9	16. 1	29.9	27.7	28.0	19.0	43.9	28.4	41.0	29.7	29.8
Bronchitis, acute and chronic (106)	7.6	6.7	7.3	8.2	7.1	8.3	10.8	11.2	11.8	10.6	9.0
Pneumonia, all forms (107-109) -...	1.1	2.1	2.0	1.8	. 7	2.9	4.2	2.2	2.9	2.8	2.3
Diseases of pharynx and tonsils ($115 \mathrm{~b}, 115 \mathrm{c}$)	13.7	10.5	11.6	12.7	12.0	13.4	14.5	17.2	18.7	18.5	14.3
Other respiratory diseases (104, 105, 110-114)	10.9	9.2	12.2	12.5	14.6	19.7	26.1	28.3	35.3	36.8	20.3
Digestive diseases.........................-7-11-1	23.7	22.4	21.5	21.7	26.9	25.5	29.0	36.0	35.5	29.1	27.1
Diseases of stomach except cancer (117, 118).	2.2	2.7	2.2	1.2	2.7	2.4	2.8	3.8	4.2	2.8	2.7
Diarrhes and enteritis (120) .-. .	2.4	2.3	1.6	2.4	2. 9	3.1	3.8	6.1	6.7	6.2	3.8
Appendicitis (121).....	13.8	10.4	11.9	12.1	15.6	13.5	16.4	16.9	13.8	10.5	13.5
	. 4	. 5	. 5	. 3	. 2	. 4	.2 8.8	. 8	. 6	. 6	. 4
Other digestive diseases (115a, 115d, 116, 122b-129)	4.9	6.5	5.3	5.7	5.5	6.1	5.8	8.4	10.2	9.0	6.7
Nonrespiratory-nondigestive diseases....-. Infectious and parasitic diseases (1-12, $14-24,26-29,31,32$,	43.8	44.2	46.9	50.1	54.9	62.0	59.0	79.6	90.0	96.6	62.7
34-44) ${ }^{8}$	3.1	3.6	2.3	2.6	4.1	4.8	5. 2	4.6	6.2	6.3	4.3
Cancer, all sites (45-55)	. 3	. 6	. 5	. 5	. 3	. 5	. 4	. 2	. 4	. 8	. 4
Rheumatism, acute and chronic (58,59)	2.9	3. 6	2.4	3.1	3.3	3.1	2.9	5. 2	4.9	4.8	3.6
Neurasthenia and the like (part of 84d)	5.4	5.5	5. 7	5.4	6.2	8.6	9.7	14.0	14.3	13.9	8.9
Neuralgia, neuritis, soiatica (87b) -	2.4	1.2	2.1	2.6	2.5	2.8	1.8	3.3	3.7	2.9	2.5
Other diseases of nervous system (80-85, 87, except part of 84d, and 87b)	1.0	.6	1.2	1.5	1.3	1.1	.9	1.4	1.8	2.0	1.3
	1.3	1.4	1.8	1.7	1.8	1.4	1.7	2.5	2.7	2.5	1.9
Diseases of arteries and high blood pressure (90-99, 102)	. 7	. 8	1.7	. 8	1.1	. 9	. 8	1.4	1.7	1. 6	1.0
Other diseases of circulatory system ($100,101,103)$.	2.8	2.9	2.5	2.8	3.6	3.7	3.4	5.5	6.2	6.5	4.0
Nephritis, acute and chronic (130-132) .-.-.	. 2	. 3	. 5	1.6	1.5	0	1.3	. 5	1.6	. 1	$1{ }^{.4}$
Other diseases of genitourinary system (133-139).	9.3	8.9	9.5	10.2	10.6	11.6	12.6	15.2	18.8	21.3	12.8
Diseases of skin (151-163)-..........-	3.3	2.3	3.3	3.4	3.9	4.6	4.5	5.2	6.1	6.2	4.3
Diseases of organs of movement except diseases of joints (156b). All other diseases ($56,57,60-79,88,89,154,155,156 \mathrm{a}, 157$,	1.3	1.5	1.4	2.2	2.4	3.7	3.7	5.1	6.3	5.7	3.3
162)	9.8	11.0	13.0	12.7	13.3	15.2	11.1	15.5	16.3	22.0	14.0
Ill-defined and unknown causes (200)	4.9	4.0	4.7	4.0	4.5	4.2	4.7	5.4	5.7	5.7	4.8
A verage number of person-years.	16,921	15,203	15, 343	16,318	18, 008	18, 835	28, 519	29,750	27, 065	22,112	208, 074

[^4]: Exclusive of influenza and grippe, respiratory tuberculosis, and venereal diseases.

REFERENCES

(1) Gafafer, W. M.: Sickness absenteeism among industrial workers, first quarter of 1946. Pub. Health Rep., 61: 1664-1666 (November 15, 1946).
(2) -: Sickness absenteeism among industrial workers, second and third quarters of 1946. Pub. Health Rep., 62: 272-276 (February 21; 1947).
(3) -: Sickness absenteeism among industrial workers, fourth quarter of 1946. Pub. Health Rep., 62: 1095-1097 (July 25, 1947).
(4) during 1945, with absenteeism among male on the respiratory epidemale industrial workers
Health Rep., 61: $1620-1630$ (November 8, 1946).

INCIDENCE OF COMMUNICABLE DISEASES IN THE UNITED STATES

August 10-September 6, 1947

The accompanying table summarizes the incidence of nine important communicable diseases, based on weekly telegraphic reports from State health departments. The reports from each State for each week are published in Public Health Reports under the section "Incidence of Disease." The table gives the number of cases of these diseases for the 4 weeks ended September 6, 1947, the number reported for the corresponding period in 1946, and the median number for the years 1942-46.

DISEASES ABOVE MEDIAN INCIDENCE

Measles.-For the 4 weeks ended September 6 there were 2,761 cases of measles reported as compared with 3,058 for the corresponding period in 1926 and a 1942-46 median of 2,605 cases. The incidence was below the preceding 5 -year median in the New England, Mountain and Pacific sections, but in all other sections it was relatively high. For the first time since the 4 weeks ended September 7, 1946, the current incidence for the country as a whole was higher than the 1942-46 median for any corresponding 4 -week period. The 5 -year median contains 4 years of unusually high incidence of this disease and one exceptionally low year, but the median for this 4 -week period compares very favorably with that for non-epidemic years.

Whooping cough.-The incidence of whooping cough was also relatively high, the number of cases reported $(12,628)$ being 1.7 times the 1946 incidence for the same 4 weeks and 1.4 times the 1942-46 median. Each section of the country except the Pacific reported an excess over the expected seasonal median, the greatest increases being reported from the West North Central, West South Central and Mountain sections. For the country as a whole, the current incidence was the highest since 1941 when approximately 12,600 cases were reported for the corresponding 4 weeks. Since the beginning of the current year the incidence of this disease has been
running considerably above the incidence in 1946 and well above the 1942-46 medians for consecutive 4-week periods.

DISEASES BELOW MEDIAN INCIDENCE

Diphtheria.-For the 4 weeks ended September 6 there were 567 cases of diphtheria reported as compared with 845 cases during the corresponding 4 weeks in 1946 and a 5 -year (1942-46) median of 951 cases. After an increase in 1945 the number of cases of this disease dropped down again in 1946 and has continued to decline during the current year, the number of cases for the 4 weeks ended September 6 being the lowest on record for this period. In the New England section the number of cases was 2 times the preceding 5 -year median, but in other sections the incidence either closely approximated the median or fell considerably below it.

Influenza.-The number of cases of influenza $(1,947)$ was slightly below the normal seasonal level. The number of cases in the South Atlantic section was about 20 percent above the normal seasonal expectancy and in the East North Central section the incidence was about normal, but in other sections the incidence was comparatively low. The incidence of influenza was unusually high during the first part of the year, but the number of cases has dropped gradually and the current incidence was the lowest for this period since 1942.

Meningococcus meningitis.-The number of cases (174) of meningococcus meningitis was 80 percent of the number reported in 1946 and less less than 60 percent of the 1942-46 median for the corresponding 4 weeks. The situation was favorable in all sections of the country except the Mountain; while the number of cases was not large in that section, it represented a 40 percent increase over the 1942-46 median. This disease has gradually declined from the peaks reached in 1943 and 1944 and is more nearly approaching the level of non-epidemic years.

Poliomyelitis.-The number of cases of poliomyelitis rose from 825 during the preceding 4 weeks to 2,370 during the 4 weeks ended September 6. Of the total cases, Ohio reported 306, Illinois 287, New York 232, Michigan 154, Pennsylvania 104, Massachusetts 101, California 96, New Jersey 87, Minnesota 81, Delaware 75, and Nebraska 52 cases-more than 65 percent of the total cases were reported from those 11 States. Compared with preceding years the current incidence was less than 35 percent of the 1946 figure for the corresponding weeks, and less than 70 percent of the 1942-46 median. Since in the year 1946 the poliomyelitis incidence was the highest on record, and the 1942-46 median was represented by the 1943 figure which was also a high incidence year, the current incidence is more comparable with the average for more normal years which is approxi-
mately 2,200 cases. The incidence was relatively low in each section of the country except the New England and South Atlantic; in those sections the numbers of cases were higher than in 1946 and also higher than the preceding 5 -year medians. For the country as a whole the number of cases for the first 36 weeks of 1947 was 4,658 as compared with 14,160 for the same weeks in 1946. In 1942, the most recent low year for this disease, the cases for these weeks totaled 2,167.

Scarlet fever.-The incidence of scarlet fever during the current 4 -week period was the lowest reported during any corresponding 4 -week period in the 19 years for which data are available in this form. The number of cases $(1,549)$ was slightly more than 70 percent of that reported for the same weeks in 1946 and only about 55 percent of the 1942-46 median (2,746 cases). In each section of the country the current incidence was below the seasonal expectancy and in each section except the West North Central, the Mountain, and the Pacific the incidence was the lowest in recent years.

Smallpox.-Only 3 cases of smallpox were reported during the 4 weeks ended September 6; one each in Missouri, Tennessee and Wyoming. The number of cases was the lowest reported during any 4 -week period on record. This disease has been on a gradual decline since 1938 and the 3 cases reported during the current period compares with 147 cases for the corresponding 4 weeks in that year. In the earlier years of 1929 and 1930 the cases for these weeks totaled 753 and 660 respectively.

Typhoid and paratyphoid fever.-The number of cases of these diseases was slightly below the comparatively low incidence for the corresponding 4 weeks in 1946 and was only about 75 percent of the 1942-46 median. The incidence was higher than in 1946 in the West North Central, South Atlantic and South Central sections, but the Pacific section alone reported an excess over the 1942-46 median. For the country as a whole the current incidence was the lowest for this period in the 19 years for which data are available.

MORTALITY, ALL CAUSES

For the 4 weeks ended September 6 there were 33,200 deaths from all causes reported to the National Office of Vital Statistics by 93 large cities. The median number reported for the corresponding period in 1944-46 was 31,596 . During each of the first 3 weeks of the current 4 -week period the number of deaths was higher than the 1944-46 median, but during the last week the number was 3.6 percent less than the preceding 3 -year median. The number of deaths for the first 36 weeks (ended September 6) of this year was 334,532 as compared with 328,980 deaths reported for the same period in 1946.

Number of reported cases of 9 communicable diseases in the United States during the 4-week period August 10-September 6, 1947, the number for the corresponding period in 1946, and the median number of cases reported for the corresponding period, 1942-46

Division	Current period	1946	5-year median	Current period	1946	5-year median	Current period	1946	5-year median
United States-.-------------	Diphtheria			Influenza ${ }^{1}$			Measles		
	567	845	951	1,947	2,256	2, 233	2,761	3,058	2,605
New England.	2458394314872893856	41	12	4	3	11	153	498	343
Middle Atlantic.		86	56	9	32	21	589	719	381
East North Central.--		109	109	75	32	74	747	655	612
West North Central.-		88	86	18	20	29	251	101	109
South Atlantic.......-		174	265	959	817	817	329	275	275
East South Central..-		96	152	56	175	94	77	50	50
West South Central.-		101	150	700	1,038	1,038	218	221	173
Mountain.-.-----..--		41	41	103	118	${ }^{1} 154$	126	262	228
Pacific..---------------		109	84	23	21	66	271	277	607
	Meningococcus meningitis			Poliomyelitis			Scarlet fever		
United States-...-.......	174	218	299	2,370	7,129	3,481	1,549	2,163	2,746
New England.........	8	10	16	238	166	222	97	156	242
Middle Atlantic.....-	40	37	65	423	494	494	289	408	421
East North Central --	33	43	73	838	1,835	907	353	510	652
West North Central.-	9	21	21	255	2,340	360	195	158	283
South Atlantic.	16	41	42	244	225	225	163	279	449
East South Central..-	17	19	29	58	257	153	71	143	217
West South Central.--	18	18	27	60	410	277	92	122	122
Mountain.-	14	6	10	95	526	166	100	127	127
Pacific..........-.......--	19	23	31	159	876	222	189	260	301
	Smallpox			Typhoid and paratyphoid fever			Whooping cough		
United States-..--........---	3	4	10	485	507	675	12,628	7,686	8,711
New England	0			34	50	39	965	712	712
Middle Atlantic......-	0	0	0	59	102	97	2,374	1,525	2,140
East North Central..-	0	3	3	51	68	75	3,742	2,832	2, 832
West North Central.-	1	0	3	30	21	49	${ }^{979}$	325	519
South Atlantic......---	0	0	1	83	59	130	1,450	958	1,173
East South Central .--	1	0	1	66	46	116	${ }^{315}$	190	307
West South Central.-	0	0	0	103	88	149	1,541	610	692
Mountain..-	1	1	0	25	31	31	613	206	361
Pacific..	0	0	0	34	42	30	649	328	703

${ }^{1}$ North Carolina, New York, and Pennsylvania excluded; New York City and Philadelphia included.

DEATHS DURING WEEK ENDED SEPTEMBER 27, 1947

[From the Weekly Mortality Index, issued by the National Office of Vital Statistics]

INCIDENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

REPORTS FROM STATES FOR WEEK ENDED OCTOBER 4, 1947

Summary

A total of 613 cases of poliomyelitis was reported for the current week, as compared with 801 last week, 1,142 for the corresponding week last year, and a 5 -year (1942-46) median of 639 . The decrease during the week is approximately 24 percent, as compared with 9 percent in the preceding week and 12 percent in the corresponding week last year. Slight increases were recorded in the New England and South Atlantic areas. The 14 States reporting currently 12 or more cases, of which 4 showed increases, are as follows (last week's figures in parentheses): Increases-Connecticut 15 (2), Iowa 15 (13), Maryland 12 (8), North Carolina 23 (18); decreases-Massachusetts 29 (30), New York 100 (117), New Jersey 25 (34), Pennsylvania 25 (31), Ohio 109 (176), Illinois 45 (50), Michigan 44 (79), Wisconsin 13 (25), Idaho 17 (26), California 21 (28). Since March 15, the approximate average date of seasonal low incidence of the disease, a total of 7,300 cases has been reported (slightly more than half the average for the corresponding periods of the past 4 years- 6,720), as compared with 19,177 for the same period last year, and a 5 -year median of 9,899 .
Cumulative figures since the respective average dates of seasonal low incidence are below the corresponding 5 -year medians for diphtheria, influenza, measles, meningococcus meningitis, poliomyelitis, scarlet fever, smallpox, typhoid and paratyphoid fever, and typhus fever. Totals since the first of the year are above the 5 -year medians for the dysenteries (combined), Rocky Mountain spotted fever, tularemia, and whooping cough. The total to date for undulant fever is 4,860 , as compared with 3,848 and 3,702 for the same periods of 1946 and 1945, respectively. A total of 484 cases of infectious encephalitis has been reported to date, as compared with 506 for the same period last year and a 5 -year median of 511.

Deaths recorded during the week in 93 large cities of the United States totaled 8,604, as compared with 8,173 last week, 8,503 and 8,316 , respectively, for the corresponding weeks of 1946 and 1945, and a 3yosar (1944-46) median of 8,316 . The total for the year to date is 367,842 , as compared with 362,522 for the same period last year. A total of 691 deaths under 1 year of age was recorded during the week in the same cities, as compared with 649 last week. The cumulative total is 29,678 , as compared with 25,900 for the corresponding period last year.

Telegraphic morbidity reports from State health officers for the week ended October 4. 1947, and comparison with corresponding week of 1946 and 5-year median
In these tables a zero indicates a definite report, while leaders imply that, although none was reported, cases may have occurred.

Division and State	Diphtheria			Influenza			Measles			Meningitis, meningococcus		
	Week ended-		$\begin{gathered} \text { Me- } \\ \text { dian } \\ 1942- \\ 46 \end{gathered}$	Week ended-		$\begin{gathered} \text { Me- } \\ \text { dian } \\ 1942- \\ 46 \end{gathered}$	Week ended-		Median 194246	Week ended-		$\begin{gathered} \mathrm{Me}- \\ \text { dian } \\ 1942- \\ 46 \end{gathered}$
	$\begin{gathered} \text { Oct. } \\ 4, \\ 1947 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 5 \\ 1946 \end{gathered}$		Oct. -4,	$\begin{gathered} \text { Oct. } \\ 5, \\ 1946 \end{gathered}$		$\begin{aligned} & \text { Oct. } \\ & \text { 4, } \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & -5, \\ & 1946 \end{aligned}$		$\begin{aligned} & \text { Oct. } \\ & 4, \\ & 1947 \end{aligned}$	$\begin{gathered} \text { Oct. } \\ 5 \\ 1946 \end{gathered}$	
NEW ENGLAND Maine New Hampshire. Vermont Massachusetts Rhode Island Connecticut middle atlantic New York. New Jersey. Pennsylvania												
	0	0	0					108	6	0	3	0
	0	0	0	3				5	4	0	0	0
	0	0	0					23	20	0	0	0
	3	24	4				11	96	53	0	2	2
	1	$\underline{2}$	0							0	0 2	0 2
	0	1	0		1	1	3	10	8	0	2	2
	3	13	9	14	${ }^{1} 3$	${ }^{1} 5$	38	77	76	1	6	12
	0	1	1		3	4	14	14	14	1	2	3
	10	14	6	${ }^{(2)}$	${ }^{2} 1$	21	22	122	60	4	5	5
RAST NORTH CENTRAL												
Ohio...-....-.-.....-	11	24	18	2	6	4	17	40	18	1	5	5
Indiana		9	10	15	11	11	$\begin{array}{r}8 \\ 4 \\ \hline\end{array}$	${ }^{7}$	${ }^{6}$	0	4	8
Illinois...--	2 4	6	10 8	1	,	4	45	11 6	18 24	7	4 5	8
Wisconsin.-	0	3	0	16		11	31	38	39	1	0	2
WEST NORTH CENTRAL												
Minnesota..	9	3	5				28		4	2	0	1
Iowa-.---	1	5	5				3	1	2	1	2	1
Missouri ${ }^{\text {North Dakota }}$	2	1	3	1		8	6		1	2	2	3
North Dakota. ${ }^{\text {South }}$ Dakota	1	1	2		10	8	10		2	0	0	0
Nebraska_-.---------	0	0	0	5		2		3	3	0	,	0
Kansas \qquad south atlantic	3	7	6			2	5	3	5	0	2	1
Delaware-	0	0	0				1			0	0	0
Maryland 3-........--	4	10	11		5	1	1	5	4	1	2	3
District of Columbia	0	0	0				1	5	1	2	0	0
Virginia	7	18	18	104	149	107	15	14	12	3		4
West Virginia...	5	8	10	22	1		25	15	4	0	0	1
North Carolina.	26	21	48			2	3	35	6	3	1	1
South Carolina	39	0	24	229	22	177	19		3	0	0	1
Georgia-.....	24	10	30	10	2	,	19		3	1	2	2
Florida.--	13	9	9		4	1	5	5	2	0	0	0
kast south central												
Kentucky ----------	11	14	12			1		4	3	0	2	
Tennessee.	19	9	.		2	2	6		6	3	2	2
Alabama--....-.---	17	8	29	28	13	21	1	5	3	3	0	1
Mississippi ${ }^{\text {8 }}$-.-.-----	12	12	20				1			1	1	1
west south central												
Arkansas...	2	6	7	8	9	22	4	1	3	0		
Louisiana	4	1	4	1	1	3	2	2	2	1	0	1
Oklahoma...-.......-	2	7	8	6	37	22	2	1	3	0	0	0
Texas...............--	24	22	52	646	823	580	22	25	22	8	2	7
Montana.	0	0	2				23	20	20	1	0	0
Idaho....	1	5	1	6	22	9	5	5	5	0	0	0
Wyoming.	0	0	0		9	8			1	0	,	0
Colorado .-.	2	5	8	18	50	15	5	4	4	1	0	0
New Mexico.	,	3	3				4	12	1	0	0	0
Arizona	0	4	1	15	18	36		14	3	0	,	0
Utah ${ }^{2}$	0	0			3		1	14	7	0	,	0
Nevada	0	0	0			1				0	0	0
Pactific												
Washington	1	47	10				12	19	23	0	1	1
Oregon----	0	2	3	6	4	4	12	9	21	0	0	,
California	14	12	19	7		7	81	56	56		3	6
Total	287	351	409	1,171	1,221	1,098	551	850	821	49	66	91
40 weeks	8,517	$\overline{11,787}$	9,924	308,088	197,065	87,071	188,373	43,031	544,415	2,776	4,865	6,770
Seasonal low week 4	(27th) July	5-11	(30th) J	uly 26 -	Aug. 1	(35th)	ug. 30-	Sept. 5	(37th)	Sept.	13-19
Total since low	2,2201	3,159	3,186	6,575!	6,868	6,868	2,871	2,946	2,946	135	199	275

[^5]Telegraphic morbidity reports from State health officers for the week ended October 4, 1947, and comparison with corresponding week of 1946 and 5-year median-Con.

${ }^{3}$ Period ended earlier than Saturday.
Dates between which the approximate low week ends. The specific date will vary from year to year.
${ }^{3}$ Including paratyphoid fever reported separately, as follows: Massachusetts 5 (salmonella infection); New York 2; Pennsylvania 1; Illinois 1; Minnesota 1; North Dakota 1; Maryland 1; Virginia 4; South Carolina 1; Georgia 2; Tennessee 3; Louisiana 1; and Texas 1.

Correction: Poliomyelitis, North Carolina week ended September 13, 14 cases (instead of 15),-deducted from cumulative totals. Delayed reports: Arkansas, week ended June 28, 1 case; week ended July 12, 1 case; included in cumulative totals only.

Telegraphic morbidity reports from State health officers for the week ended October 4, 1947, and comparison with corresponding week of 1946 and 5 -year median-Con.

${ }^{3}$ Period ended earlier than Saturday.
${ }^{7}$ 2-year average, 1945-46.
Leprosy: Mississippi 1, Texas 1. Psittacosis: California 1 (laboratory infection).
Alaska: Week ended Sept. 27, 1947, no cases reported; week ended Oct. 4, bronchopneumonia 1, chickenpox 2.

Territory of Hawaii, week ended Oct. 4, 1947: Bacillary dysentery 2, lethargic encephalitis 1, leprosy 1, measles 3 , typhoid fever 1 , whooping cough 20.

WEEKLY REPORTS FROM CITIES *

City reports for week ended September 27, 1947
This table lists the reports from 89 cities of more than 10,000 population distributed throughout the United States, and represents a cross section of the current urban incidence of the diseases included in the table.

* In some instances the figures include nonresident cases.

City reports for week ended Sept. 27, 1947-Continued

Caty reports for week ended Sept. 27, 1947—Continued

.Division, State, and City	Sวsв0 в!ִวч		Influenza									
Pactipic												
Washington:												
Seattle .-	0	0		0	2	0	3	0	1	0	1	
Spokane.	0	0		0	1	1	2	1	0	0	0	5
Tacoma.	0	0		0	1	0	0	0	2	0	0	6
California:												
Los Angeles...	2	0	1	0	8	1	2	13	7	0	0	14
Sacramento..	1	0		0	1	0	0	0	0	0	0	4
San Francisco-.......-	0	0		0	18	0	1	0	3	0	1	9
Total	60	2	17	2	142	11	186	221	129	0	24	863
Corresponding week, $1946{ }^{1}$	67								173	0	23	536
A verage 1942-46 ${ }^{1}$.........-	66		35	${ }^{2} 8$	${ }^{1} 164$		1235		328	0	21	720

${ }^{1}$ Exclusive of Oklahoma City.
${ }^{2}$ 3-year average, 1944-46.
${ }^{3}$ 5-year median, 1942-46.
Anthrax.-Cases: Philadelphia 1.
Dysentery, amebic.-Cases: Boston 1; New York 2; Nashville 1; Oklahoma City 1, Los Angeles 1.
Dysentery, bacillary.-Cases: Charleston, S. C., 1; Memphis 1; Los Angeles 1.
Dysentery, unspecified.-Cases: San Antonio 1.
Rocky Mountain spotted fever.-Cases: Camden 1; St. Louis 1.
Typhus fever, endemic.-Cases: Detroit 1; Charleston, S. C., 1; Tampa 1; New Orleans 1.
Rates (annual basis) per 100,000 population, by geographic groups, for the 89 cities in the preceding table (latest available estimated population, $34,431,200$)

			Influenza									
New England.	5.7	0.0	5.7	0.0	29	0.0	14.3	48.7	29	0.0	5.7	255
Middle Atlantic.	2.3	0.0	1.4	0.0	14	1.9	35.2	29.2	12	0.0	4.2	108
East North Central	7.3	0.6	4.3	0.6	18	0.6	23.7	63.2	21	0.0	3.0	153
West North Central	6.0	2.0	2.0	2.0	60	0.0	21.9	17.9	28	0.0	2.0	167
South Atlantic	36.0	0.0	3.3	0.0	7	3.3	32.7	13.1	31	0.0	4.9	167
East South Central	5.9	0.0	0.0	0.0	12	5. 9	59.0	17.7	30	6.0	0.0	65
West South Central.	7.6	0.0	0.0	0.0	0	2.5	43.2	2.5	15	0.0	5.1	15
Mountain.	74.3	0.0	8.3	0.0	41	0.0	0.0	16.5	17	0.0	0.0	355
Pacific	4.7	0.0	1.6	0.0	49	3.2	12.7	22.1	21	0.0	3.2	66
Total	9.1	0.3	2.6	0.3	22	1.7	28.2	33.6	20	0.0	3.6	131

PLAGUE INFECTION IN KERN AND SISKIYOU COUNTIES, CALIFORNIA

Plague infection has been reported proved on September 26 in fleas from ground squirrels collected in Kern and Siskiyou Counties, Calif., as follows:

Kern County.-A pool of 169 fleas from 36 ground squirrels, Citellus beecheyi, taken 1 mile east and 8 miles north of Lebec.

Siskiyou County.-A pool of 141 fleas from 8 ground squirrels, C. douglasii, taken 5 miles east of Montague, and a pool of 206 flea from 11 ground squirrels, same species, taken 7 miles east of Grenada.

TERRITORIES AND POSSESSIONS

Panama Canal Zone
Notifiable diseases-August 1947.-During the month of August 1947, certain notifiable diseases were reported in the Panama Canal. Zone and terminal cities as follows:

${ }^{1}$ If place of infection is known, cases are so listed instead of; ;by residence.
${ }^{2} 19$ recurrent cases.
${ }^{3}$ In the Canal Zone only.

FOREIGN REPORTS

CANADA

Provinces-Communicable diseases-Week ended September 13, 1947.-During the week ended September 13, 1947, cases of certain communicable diseases were reported by the Dominion Bureau of Statistics of Canada as follows:

Disease	Prince Edward Island	Nova Scotia	New Brunswick	Que- bec	$\begin{gathered} \text { On- } \\ \text { tario } \end{gathered}$	$\begin{aligned} & \text { Mani- } \\ & \text { toba } \end{aligned}$	Sas-katchewan	$\underset{\text { ta }}{\text { Alber- }}$	$\begin{array}{\|c\|} \text { British } \\ \text { Colum } \\ \text { bia } \end{array}$	Tota
Chickenpox		3		9	43	5	5	15	20	100
Diphtheria.-		1		18	2	2				24
Dysentery: Amebic					4					4
Bacillary				8						8
Encephalitis, infectious.-					1	14	19			34
German measles....-....-				4	7			4	7	22
Influenza.		16			32	3			4	55
				22	18	7	9	15	13	84
Meningitis, meningococcus.		1			1			1		3
		9		11	65	2	7	3	7	104
Poliomyelitis		4	4	12	80	50	19	6	22	197
Scarlet fever-----.-.-.		2	2	21	17		1	3		46
Tuberculosis (all forms).-		4	6	114	40	30	14	15	36	259
Typhoid and paratyphoid fever				7	2		3	1	4	17
Undulant fever.				1	3			1		5
Venereal diseases:										
Gonorrhea--	7	28	11	146	112	33	24	37	48	446
Syphilis......-.-.-...-	2	17	7	54	52	13	5	5	17	172
Whooping cough.				51	173	11	13	22	20	290

NEW ZEALAND

Notifiable diseases-4 weeks ended August 30, 1947.-During the 4 weeks ended August 30, 1947, certain notifiable diseases were reported in New Zealand as follows:

NORWAY

Notifiable diseases-June 1947.-During the month oi June 1947, cases of certain notifiable diseases were reported in Norway as follows:

Disease	Cases	Disease	Cases
Cerebrospinal meningitis.	18	Mumps	459
Diphtheria.	91	Paratyphoid fever	40
Dysentery	6	Pneumonia (all forms)	1,486
Encephalitis, epidemic	5	Poliomyelitis...-	38
Erysipelas----	444	Rheumatic fever	196
Gastroenteritis	5,520	Scabies.	2,226
Gonorrhea	570	Scarlet fever	356
Hepatitis, epidemic.	182	Syphilis..	94
Impetigo contagiosa	2, 648	Tetanus	1
Influenza.	1,280	Tuberculosis (all forms).	447
Laryngitis, including bron	8,427	Weil's disease	4
Measles.	37	Whooping cough	653

reports of cholera, plague, and yellow fever received dURING THE CURRENT WEEK

Note.-Except in cases of unusual incidence, only those places are included which had not previously reported any of the above-named diseases, except yellow fever, during recent months. All reports of yellow fever are published currently.
A table showing the accumulated figures for these diseases for the year to date is published in the Public Health Reports for the last Friday of each month.

Cholera

China.-Cholera has been reported in China as follows: Chekiang Province-Ninghsien, August 21-31, 1947, 15 cases, 2 deaths; Pingyang, August 11-September 10, 1947, 13 cases, 2 deaths; Fukien Province-Shaowu, September 1-10, 1947, 3 deaths; Honan Province, August 11-September 10, 1947, 36 cases (suspected), 24 deaths; Kiangsu Province-Taking, July 1-August 31, 1947, 104 cases, 23 deaths, Tungtai, September 1-10, 1947, 33 cases, Nantung, September 11-20, 1947, 32 cases.

Egypt.-Under date of October 3, 1947, the Interim Commission
has reported cholera in Egypt as follows: September 21-29, 1947, 75 cases confirmed bacteriologically in the provinces of Kalyubiya and Sharkiya; press reports, September 26, 94 cases, 11 deaths, including 15 cases in the region of Ismailiya; September 27, 109 cases; September 28, 140 cases in the provinces of Dakahliya, Giza, Kalyubiya, and Sharkiya, including Cairo and Ismailiya; September 29, 76 cases, 37 deaths, provinces not stated, including 5 suspected cases and 1 death in Suez and 1 case in Qena province; September 30, 338 cases in Elkarin village, Sharkiya province; October 1, 172 cases, 50 deaths, including 5 cases in Cairo.

An unofficial report of October 6, 1947, stated that the number of cases of cholera in Egypt had mounted to 1,348, with 344 deaths.

Plague

Canada-Alberta Province-Plague-infected fleas.-For the period July 5 to September 12, 1947, plague infection in fleas from squirrels was reported in the vicinity of Brooks, Cereal, and Gleichen, Alberta Province, Canada.

China.-Plague has been reported in China as follows: Fukien Province, July 1-August 10, 1947, 19 cases, 8 deaths; Yunnan Province-Tongchung, June 1-30, 47 cases, 6 deaths; Paoshen, July 1-September 11, 112 cases, 72 deaths.

Madagascar-Mananjary.-For the week ended August 30, 1947, 5 cases of plague were reported in Mananjary, Madagascar.

Manchuria.-Under date of September 26, 1947, plague has been reported in Fufu and Yushu, both localities being north of Sungari, where more than 100 deaths have occurred.

Peru.-For the month of August 1947, plague infection was reported in Peru as follows: Lambayeque Department, Province of Chiclayo, Monsefu, 1 case; Lima Department, Province of Chancay, Sayan, 1 case, 1 death; Valley Chancay, 2 cases, 1 death; Valley Huaura, 5 cases, 3 deaths; Valley Pativilca, 1 case, 1 death.

Siam (Thailand).-For the week ended August 9, 1947, 2 cases of plague were reported in Kanburi Province, Siam (Thailand).

Yellow Fever

Colombia.-Yellow fever has been reported in Colombia as follows: Antioquia Department-Puerto Berrio, August 1, 1 death, San Roque, August 4-13, 3 deaths; Intendencia of Meta-San Martin, August 27-September 7, 1947, 3 deaths; Santander DepartmentSimacota, August 23, 1947, 1 death.

[^0]: ${ }^{1}$ From the Division of Public Health Methods.

[^1]: ${ }^{2}$ Most of the job classification sheets from which these data were taken provide that varying amounts of experience may be substituted for varying amounts of education. For the purposes of this analysis, minimum qualifications have been considered to be the minimum educational requirement, with the resultant experience requirement. In several States, specifications further provide that any other equivalent combination will be acceptable. No attempt has been made to determine what the equivalents are unless they were specified. The definition of equivalents, where they are unspecified is a problem for administrative decision by the State merit-system agency, or the Civil Service Commission. Such decisions will show a wide variance in content, but are not sufficient in number to invalidate the picture obtained from this analysis.

[^2]: ${ }^{3}$ The Educational Qualifications of Public Health Statisticians. Committee on Professional Education, American Public Health Association, October 25, 1938.

[^3]: 1 From Industrial Hygiene Division, Bureau of State Services.
 ${ }^{2}$ Rheumatism; neuralgia, neuritis, and sciatica; and diseases of organs of movement except diseases of joints.
 ${ }^{3}$ Neurasthenia and the like, and other diseases of nervous system.
 ${ }^{4}$ Diseases of heart, diseases of arteries and high blood pressure, and other diseases of circulatory system.
 ${ }^{6}$ Nephritis, acute and chronic; and other diseases of genitourinary system.

[^4]: 1 Industrial injuries and venereal diseases are not included.

[^5]: ${ }^{1}$ New York City only. ${ }^{2}$ Philadelphia only. ${ }^{3}$ Period ended earlier than Saturday.
 4 Dates between which the approximate low week ends. The specific date will vary from year to year.

